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Abstract
The pseudospin symmetry solution of the Dirac equation for spin 1/2 particles
moving within the Kratzer potential connected with an angle-dependent
potential is investigated systematically. The Nikiforov–Uvarov method is used
to solve the Dirac equation. All of the studies are performed for the exact
pseudospin symmetry (SU2) case and also the exact spin symmetry case is
given briefly in the appendix. Bound-state solutions are presented to discuss
the contribution of the angle-dependent potential to the relativistic energy
spectra in the full description case which is either unavailable or excessively
complicated.

PACS numbers: 03.65.Ge, 03.65.Pm, 02.30.Gp, 31.30.Jv

1. Introduction

The relativistic descriptions introduced to understand the relativistic behaviour of spin 1/2
particles show that the solution of the Dirac equation with mixed potentials for particles such
as atoms, nuclei and hadrons play a central role in a realistic nuclear system [1]. The electron
or muon in muonic atoms subject to the relevant potentials exhibit Coulombic behaviour and
move independently in the relativistic potentials, involving mixtures of attractive scalar and
repulsive vector potentials with opposite signs. A wide interest is to study the pseudospin
symmetry considered as a relativistic symmetry in nuclear physics to rename the single-particle
levels in the shell model [2, 3]. The idea of pseudospin symmetry was introduced to explain
the quasidegeneracy in some nuclei between single-nucleon states with quantum numbers
(n, �, j = 1/2) and (n − 1, � + 2, j = � + 3/2), where n, � and j are the radial, the orbital
and the total angular momentum quantum numbers, respectively. These levels have the same
‘pseudo’ orbital angular momentum quantum number, �̃ = � + 1, and pseudospin quantum
number, s̃ = 1/2. For example, for

(
ns 1

2
, (n − 1)d 3

2

)
one has �̃ = 1, for

(
np 3

2
, (n − 1)f 5

2

)
one
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has �̃ = 2, etc. Pseudospin symmetry is exact when doublets with j = �̃ ± s̃ are degenerate
[4–8].

Recently, analytic solutions of the Dirac equation with spin and pseudospin symmetry
have received considerable attention. Ginocchio [9] solved the Dirac equation for the
triaxial, axial and spherical harmonic oscillators with spin symmetry. Chen et al [10]
solved the Dirac equation for two kinds of harmonic oscillator potentials with exact spin
symmetry, � = V − S = 0, and pseudospin symmetry, � = V + S = 0, by using a
Dirac Hamiltonian with scalar S and vector V potentials quadratic in space coordinates.
Moreover, these authors discussed the origin of pseudospin symmetry and its breaking in real
nuclei in the relativistic mean field theory. Guo et al [11] studied the s-wave Dirac equation
for the Woods–Saxon potential with spin and pseudospin symmetry and found a constant
relationship between V and S potentials, i.e., V − S = constant and V + S = constant.
In the general sense, pseudospin symmetry occurs for V + S = constant in the Dirac
equation. Very recently, Zou et al [12] have investigated the Dirac equation for the Eckart
potential with an equally mixed case. The authors have only considered the case of the
spin symmetry limitation, i.e., imposing the difference between V and S potentials to zero.
Hence, it is of considerable interest to study the Dirac–Eckart problem with general spin
symmetry and pseudospin symmetry. Jia et al [13] investigated the analytic solutions of
the Dirac equation for the Eckart potential with spin and pseudospin symmetry in terms
of the supersymmetric quantum mechanics approach and function analysis method. Qiang
et al [14] presented an application of the exact quantization rule to the relativistic solution
of the rotational Morse potential with pseudospin symmetry. As an inspiration of this study,
Berkdemir [15] has found a special solution of the pseudospin symmetry in the relativistic
Morse potential by using the Nikiforov–Uvarov (NU) method [16]. This alternative method
gives a systematical framework to obtain a spacial solution of the corresponding second-
order differential equations, i.e., Schrödinger, Dirac and Klein–Gordon equations for various
potentials [17, 18]. The general purpose of the NU method is to solve the hypergeometric-type
second-order linear differential equations in terms of special orthogonal functions [19]. For
a given potential, the associated differential equation is reduced to a spacial-type equation
with an appropriate coordinate transformation. This equation can be written in the following
form:

ψ ′′(s) +
τ̃ (s)

σ (s)
ψ ′(s) +

σ̃ (s)

σ 2(s)
ψ(s) = 0, (1)

where σ(s) and σ̃ (s) are polynomials, at most second-degree, and τ̃ (s) is a first-degree
polynomial.

In this paper, our aim is to present an analytical solution for the Dirac–Kratzer problem
with pseudospin symmetry including an angle-dependent term. We introduce the ‘sum’ and
the ‘difference’ potentials defined as � = V + S and � = V − S, respectively. When � = 0
or � = 0, the Dirac Hamiltonian is invariant under a SU(2) symmetry [20]. This is a general
feature independent of the particular forms of S and V . We start dealing with the case � = 0
(S = −V ) and also using the Kratzer potential plus an angle-dependent potential for the case
� �= 0, i.e., � ≡ �(r, θ;A,B,C) = −A/r + (B + C cot2 θ)/r2 [21, 22]. We also give a
short summary of the relationship between pseudospin and spin symmetry solutions for the
cases � = 0 (S = V ) and also � �= 0 at the end of this paper. Moreover, we follow the
basic solution procedure of the NU method given in [23]. To keep away from notational
complications and to preserve the well-defined discussions, we will follow the latest study of
Guo et al [24].
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2. Pseudospin symmetry solution for the relevant potentials

2.1. Separating variables of the Dirac equation with pseudospin symmetry

Relativistic symmetry is valid if the potentials are triaxial and spherical [7]. In the case of
spherical coordinates, the Dirac equation of a single-nucleon with mass µ is given by

[�α · �p + β(µ + S(�r)) + V (�r)]ψ(�r) = Eψ(�r), (2)

where the unites h̄ and c are set to 1. The term V (�r) comes from the time component of a
four-vector potential. The space components are usually called the vector potential and have
been put to zero here. The S(�r) piece is introduced as an extra space dependent mass term, not
obtained by minimal coupling. E is the relativistic energy eigenvalues of the Dirac particle,
�p is the three-momentum operator, �α and β are 4 × 4 Dirac matrices given in the following
forms, respectively,

�α =
(

0 �σ
�σ 0

)
β =

(
0 I

−I 0

)
. (3)

Here �σ is a three-vector whose components are two-dimensional Pauli matrices and I stands
for the 2 × 2 identity matrix. For spherical nuclei, the nucleon angular momentum �J and
K̂ = −β(�σ · �L + 1) commute with the Dirac Hamiltonian H, independent of the spin and
pseudospin symmetries, where �L is the orbital angular momentum. According to the complete
set of the conserved quantities (H, K̂, �J 2, Jz), the Dirac eigenfunctions are labelled by the
conserved quantum numbers j and κ rather than orbital angular momentum or pseudo-orbital
angular momentum. The eigenfunctions have the form

ψ(�r) =
(

f (�r)
g(�r)

)
(4)

where f (�r) and g(�r) are the upper (large) and lower (small) spinor components of the wave
function ψ(�r), respectively. The spherically symmetric Dirac eigenfunction can then be written
according to its upper and lower components. The Dirac equation given in equation (1)
may be reduced to a set of two-coupled ordinary differential equations in terms of these
components, namely

�σ · �pf (�r) = (E + µ − �)g(�r), (5)

�σ · �pg(�r) = (E − µ − �)f (�r), (6)

where the ‘difference’ and ‘sum’ potentials are defined by � = V (�r) − S(�r) and � =
V (�r) + S(�r), respectively. To study the exact pseudospin symmetry, � is equalized to zero,
i.e., � = 0. In this case, equation (6) is simplified into the following form:

f (�r) = �σ · �p
E − µ

g(�r). (7)

Substituting equation (7) into equation (5), a Schrödinger-like equation is obtained for the
lower spinor component of the Dirac equation,

[�p2 + (E − µ)�]g(�r) = (E2 − µ2)g(�r). (8)

When � is taken to be the Kratzer potential plus an angle-dependent potential, i.e.,
� ≡ �(r, θ;A,B,C) = −A/r + (B + C cot2 θ)/r2, equation (8) becomes[

−∇2 + (E − µ)

(
−A

r
+

B

r2
+

C cos2 θ

r2 sin2 θ

)]
g(�r) = (E2 − µ2)g(�r). (9)

3
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To see the decoupling of pseudospin and pseudo-orbital angular momentum, the lower spinor
component g(�r) can be split into two parts as a spin up or a spin down, i.e.,

(1
0

)
or

(0
1

)
,

multiplied by a function of the spherical coordinates. In this case, g(�r) can be written in
spherical coordinates as follows:

g(�r) ≡ g(r, θ, ϕ) = G(r)

r
�(θ)
(ϕ)χ̃m, (10)

where m is the projection of angular momentum on the z-axis and its value is ±1/2. χ̃m

are two-component spinors named spin up or spin down. Substituting equation (10) into
equation (9), the angular and radial wave functions are separated as

d2
(ϕ)

dϕ2
+ �̃2
(ϕ) = 0, (11)

1

sin θ

d

dθ
sin θ

d�(θ)

dθ
+

(
ν − C(E − µ)

cos2 θ

sin2 θ
− �̃2

sin2 θ

)
�(θ) = 0, (12)

d2G(r)

dr2
+

[
(E2 − µ2) − (E − µ)

(
B

r2
− A

r

)
− ν

r2

]
G(r) = 0, (13)

where �̃2 and ν are separation constants and ν represents the κ(κ − 1) (or �̃(�̃ + 1)) in terms
of the spin–orbit coupling term κ . For the bound state, we have to consider the boundary
conditions 
(ϕ + 2π) = 
(ϕ) in equation (11). Furthermore, �(0) and �(π) have a finite
value in equation (12) and the radial function boundary conditions are given as G(0) = 0
and G(∞) = 0 in equation (13). Considering these boundary conditions, the solution of
equation (11) can be obtained immediately as


�̃(ϕ) = 1√
2π

ei�̃ϕ, �̃ = 0,±1,±2, . . . . (14)

Here, �̃ is a quantum number coming from the ϕ-dependent part of the wave function and the
projection of the pseudo-orbital angular momentum along the symmetry axis [20].

2.2. Solution of the θ -dependent equation

In order to obtain the solution of equation (12), a new variable x = cos θ is introduced. By
setting

C̃ = C(E − µ) + ν = �′(�′ + 1), (15)

where �′ is a new pseudo-orbital angular momentum which comes from the contribution of
the angle-dependent potential, and

D̃ = ν − �̃2, (16)

equation (12) becomes

d2�(x)

dx2
− 2x

1 − x2

d�(x)

dx
+

1

(1 − x2)2
(D̃ − C̃x2)�(x) = 0. (17)

The comparison of equations given in equation (1) and equation (17) gives us the following
polynomials;

τ̃ (x) = −2x, σ (x) = 1 − x2, σ̃ (x) = D̃ − C̃x2. (18)

4
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The basic concepts of the NU method given in [23] are followed to solve equation (17).
According to [23], the polynomial π(x) is obtained by inserting the above equations into
equation (11) of [23]:

π(x) = ±
√

x2(C̃ − k) + k − D̃, (19)

where k is a constant. According to the NU method to find polynomial solutions of
equation (17), the expression under the square root must be the square of a linear polynomial
in x. Therefore, the polynomial π(x) is found in the following possible values:

π(x) = ±
{√

C̃ − D̃ for k+ = C̃

x
√

C̃ − D̃ for k− = D̃,
(20)

where k+ and k− are the roots of k. In order to obtain a physical solution valid in the NU
method, the derivation of polynomial τ(x) = τ̃ (x) + 2π(x) must have a negative value. Thus,
we take

k− = D̃, (21)

so that

π(x) = −x
√

C̃ − D̃. (22)

Then, τ(x) is arranged as follows,

τ(x) = −2x(1 +
√

C̃ − D̃), (23)

and hence τ ′(x) becomes

τ ′ = −2(1 +
√

C̃ − D̃). (24)

Using equation (8) of [23], λn′ and λ are obtained as

λn′ = n′2 + n′ + 2n′
√

C̃ − D̃, (25)

λ = k− + π ′(x) = D̃ −
√

C̃ − D̃. (26)

Comparing equation (25) with equation (26) and recalling the value of C̃ given in equation
(15), the new pseudo-orbital angular momentum is obtained as follows:

�′(�′ + 1) − [�̃2 + C(E − µ)] −
√

�̃2 + C(E − µ) = n′2 + n′ + 2n′
√

�̃2 + C(E − µ),

�′(�′ + 1) = (
n′ +

√
�̃2 + C(E − µ)

)(
n′ +

√
�̃2 + C(E − µ) + 1

)
,

�′ = n′ +
√

�̃2 + C(E − µ).

(27)

The term �′ in equation (27) can be named the ‘modified’ pseudo-orbital angular momentum,
since the contribution which comes from the angle-dependent potential damages the usual
pseudo-orbital angular momentum �̃. The parameter �′ does not need to be an integer.
However, the difference between the parameter �′ and the square root term in equation (27)
has to be an integer:

n′ = �′ −
√

�̃2 + C(E − µ), n′ = 0, 1, 2, . . . , (28)

where n′ is a quantum number coming from the θ -dependent part of the wave function and
corresponds to the number of quanta for oscillations along the symmetry axis [20]. Moreover,
there is a relationship between �̃(�̃ + 1) and �′(�′ + 1) as follows:

�̃(�̃ + 1) = �′(�′ + 1) − C(E − µ). (29)

If the contribution parameter C is fixed to zero, the last term on the right-hand side of
equation (29) will have disappeared. Hence the ‘modified’ pseudo-orbital angular momentum
will be reduced to the usual pseudo-orbital angular momentum.

5



J. Phys. A: Math. Theor. 41 (2008) 045302 C Berkdemir and R Sever

Table 1. Analytical results and parameters of the radial equation.

Parameters Analytical results

τ̃ (r) 0
σ(r) r
σ̃ (r) −ε2r2 + δr − γ

k± δ ± ε
√

1 + 4γ

π(r) 1
2 ± 1

2 (2εr +
√

1 + 4γ ) for k+ = δ + ε
√

1 + 4γ

1
2 ± 1

2 (2εr − √
1 + 4γ ) for k− = δ − ε

√
1 + 4γ

τ(r) −2εr + 1 − √
1 + 4γ

τ ′ −2ε(ε > 0)

λ δ − ε(1 +
√

1 + 4γ )

λn 2nε

2.3. Solution of the radial equation

We will now deal with the solution of the radial equation in equation (13). The acceptable
bound-state solutions are only possible if |E| < µ. Letting

−ε2 = (E2 − µ2), (ε > 0) δ = (E − µ)A, γ = ν + (E − µ)B, (30)

and also substituting these abbreviations into equation (13), we obtain a radial equation as
follows:

d2G(r)

dr2
+

1

r2
(−ε2r2 + δr − γ )G(r) = 0. (31)

To solve this equation, we again use the NU method, its basic concepts briefly given in [23].
To keep away from the repetition of the solution steps of the NU method, we summarized the
solution steps in table 1 (recalling equations (8) and (11) of [23]). According to the solution
procedure of the NU method, there are four possible solutions for π(r). These solutions can
be valid mathematically, but in the physical nature the eigenvalue solutions can be obtained
from one of the four possible solutions for π(r). To obtain the energy eigenvalues for the
pseudospin–orbit dependent solution of the Dirac particle within the Kratzer potential plus an
angle-dependent potential, it is enough to equate λ with λn given at the end of table 1, where
n is the radial quantum number coming from the radial part of the wave function. Thus, we
easily write a comprehensive solution including the angle-dependent contributions,

ε2(1 + 2n +
√

1 + 4γ )2 − δ2 = 0, (32)

(µ2 − E2)(1 + 2n +
√

1 + 4[�′(�′ + 1) + (E − µ)(B − C)])2 − (E − µ)2A2 = 0, (33)

where γ is recalled from equation (30), using the equality of ν = �′(�′ + 1) − C(E − µ)

from equation (15). From equation (33) it is very complicated to find relativistic energy
eigenvalues E, keeping in mind that �′ is energy dependent. To discuss the restrictions
on the relativistic energy spectra, a full description must be prepared in terms of the
parameters of the relevant potential. From equations (27) and (33), it can be found that
the relativistic energy eigenvalues E depend on n, n′ and �̃ as well as the parameters A,B,C

and µ (E = E(n, n′, �̃;A,B,C,µ)). Moreover, the degenerate energy spectrum is also
correlated with these parameters. However, bound-state solutions can be obtained by setting
the parameters in the relevant potential to appropriate values.

6
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3. Particular cases

3.1. The B = 0 and C = 0 case

In this subsection, we set to zero two parameters of the relevant potential. Then, the �

potential with B = 0 and C = 0 leads to the well-known Coulomb potential � = −A/r . We
should address the constant A = Zα > 0 with the fine structure constant α = 1/137, which
is correct only in three dimensions. The corresponding parameters become

�′ = n′ + |�̃| = �̃ = 0, 1, 2 . . . , γ = �̃(̃� + 1) = κ(κ − 1), (34)

and the relativistic energy spectrum is simplified into the following form,

(µ2 − E2)(1 + 2n +
√

1 + 4κ(κ − 1))2 − (E − µ)2A2 = 0. (35)

To see the restrictions on the relativistic energy spectrum, equation (35) can be written as
follows:

(E + µ) = − (E − µ)A2

(1 + 2n +
√

1 + 4κ(κ − 1))2
, (36)

E = −µ

(
(1 + 2n +

√
1 + 4κ(κ − 1))2 − A2

(1 + 2n +
√

1 + 4κ(κ − 1))2 + A2

)
. (37)

Considering equation (37), there are two types of analysis on the relativistic energy spectrum.
The first one is negative-energy bound states which are available for the condition of
(1 + 2n +

√
1 + 4κ(κ − 1))2 > A2, when � is a Coulomb potential and � = 0. The

second one represents positive-energy bound states, i.e., (1 + 2n +
√

1 + 4κ(κ − 1))2 < A2.
In this condition, E is bigger than zero because the numerator is negative and it is actually for
anti-particles subject to a strong Coulomb field. Moreover, there could not be any solutions
of equation (37) for particles, only for anti-particles. This can be seen from the fact that if the
parameter A of the � = −A/r is increased slowly form zero, the bound states will emerge
from E = −µ. The conditions of � = 0 and � = 0 are related by charge conjugation or
chiral transformations, as remarked by Castro et al [25].

As a comment, we can recall the relativistic energy spectrum coming from the spin
symmetry solution. This solution is briefly given in the appendix. For the B = 0 and C = 0
cases, the general solution of the spin symmetry given in equation (A.15) is simplified as
follows:

E = µ

(
(1 + 2n +

√
1 + 4κ(κ + 1))2 − A2

(1 + 2n +
√

1 + 4κ(κ + 1))2 + A2

)
. (38)

Equation (38) is different from equation (37) from the point of view of the relativistic energy
spectrum. For the condition (1+2n+

√
1 + 4κ(κ + 1))2 > A2, the energy spectrum is positive in

equation (38). This is not equal to the well-known positive energy spectrum of the relativistic
Dirac–Coulomb problem [26]. However, the correct nonrelativistic limit can be achieved in
the case of weak coupling, i.e., Zα � 1 and |E − µ| � µ.

3.2. The B = 0 case

When B = 0 is imposed, the relevant potential reduces to the Coulomb potential plus an
angle-dependent potential. The corresponding parameters become

�′ = n′ +
√

�̃2 + C(E − µ), γ = �′(�′ + 1) − C(E − µ), (39)

7
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and the relativistic energy spectrum is reduced to the following form,

E = −µ

(
(1 + 2n +

√
1 + 4[�′(�′ + 1) − C(E − µ)])2 − A2

(1 + 2n +
√

1 + 4[�′(�′ + 1) − C(E − µ)])2 + A2

)
. (40)

The above equation can be solved analytically to obtain the relativistic energy spectrum,
keeping in mind that �′ is energy dependent. One of the solution procedures is to follow a
graphical method for solving this transcendental equation (see [25] for details). To mention
the negative-energy bound states, the expression in the numerator of equation (40) must be
positive. However, this is not adequate for the negative states. Considering �̃2 � 0, in
order to insure �′ real, C � 0 must be satisfied due to the condition E − µ < 0. Moreover,
for the C > 0 case, there are two conditions, i.e., �̃2 � C|E − µ| and 1 + 4�′(�′ + 1) �
4C|E − µ|. The same analysis can be also prepared for the spin symmetry solution given in
equation (A.15).

3.3. The C = 0 case

When C = 0 is imposed, the relevant potential turns into the well-known Kratzer potential,
i.e., � = −A/r + B/r2. The corresponding parameters become

�′ = n′ + |�̃| = �̃ = 0, 1, 2 . . . , γ = �̃(̃� + 1) + B(E − µ), (41)

and the relativistic energy spectrum is reduced to the following form,

E = −µ

(
(1 + 2n +

√
1 + 4[̃�(̃� + 1) + B(E − µ)])2 − A2

(1 + 2n +
√

1 + 4[̃�(̃� + 1) + B(E − µ)])2 + A2

)
. (42)

Equation (42) is solvable to discuss the relativistic energy spectrum for the Kratzer potential
(see [25] for details). For the negative-energy bound-state solutions, the expression in the
numerator of equation (42) must be positive. Furthermore, the expression within the square
roots must be real. To satisfy this condition, the value of the parameter B should be arranged as
a positive or negative one. For the positive value of B, the condition of 1+ 4̃�(̃�+1) � 4B|E−µ|
must be satisfied within the square roots. The other value of B (B < 0) does not cause any
restriction within the square roots. However, the well-known Kratzer potential is valid for the
positive value of the parameter B.

4. Remarks and conclusion

We have studied the analytic solution to understand some key qualitative features of angle-
dependent potentials for the Dirac equation with spin and pseudospin symmetry. The results
we obtained in this work can be used in nuclear physics to investigate a family of the Kratzer
potential under the conditions of the pseudospin and also spin symmetry views. In the contents
of the paper, we have solved exactly the Dirac equation for the Kratzer potential plus an angle-
dependent potential by using the NU method. The negative or positive bound-state solutions
are discussed for several particular cases, such as the Coulomb potential, Kratzer potential and
their angle-dependent forms. Moreover, the solution of the Dirac equation with spin symmetry
is also studied to compare with the pseudospin symmetry cases. The effect of the contribution
constant C which comes from the angle-dependent potential is also discussed by setting its
value to appropriate interval.

8
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Appendix

The Dirac equation given in equation (4) can be reduced to a set of two-coupled equations:

�σ · �pf (�r) = (E + µ − �)g(�r), (A.1)

�σ · �pg(�r) = (E − µ − �)f (�r). (A.2)

In the limit of the exact spin symmetry, � must be set to zero. Hence, equation (A.1) takes

g(�r) = �σ · �p
E + µ

f (�r) (E + µ �= 0). (A.3)

Substituting equation (A.3) into equation (A.2), the upper spinor component of the Dirac
equation becomes

[�p2 + (E + µ)�]f (�r) = (E2 − µ2)f (�r). (A.4)

When � is taken as the Kratzer potential plus an angle-dependent potential, equation (A.4)
becomes [

−∇2 + (E + µ)

(
−A

r
+

B

r2
+

C cos2 θ

r2 sin2 θ

)]
f (�r) = (E2 − µ2)f (�r). (A.5)

To separate the differential equation in equation (A.5) for the angular and radial parts, f (�r) is
written as

f (�r) ≡ f (r, θ, ϕ) = 1√
2π

F(r)

r
�(θ) ei�̃ϕχ̃m, �̃ = 0,±1,±2, . . . (A.6)

where m is ±1/2 and χ̃m is a two-component spinor. Substituting equation (A.6) into
equation (A.5), the angular and radial parts become

1

sin θ

d

dθ
sin θ

d�(θ)

dθ
+

(̃
ν − C(E + µ)

cos2 θ

sin2 θ
− �̃2

sin2 θ

)
�(θ) = 0, (A.7)

d2F(r)

dr2
+

[
(E2 − µ2) − (E + µ)

(
B

r2
− A

r

)
− ν̃

r2

]
F(r) = 0, (A.8)

where ν̃ represents the κ(κ + 1) (or �(�+ 1)). � is the usual orbital angular momentum number.
For the bound states, �(0) and �(π) have a finite value in equation (A.7) and the radial
function boundary conditions are given as F(0) = 0 and F(∞) = 0 in equation (A.8). In
order to derive the solution of equation (A.7), a new variable x = cos θ is introduced. By
setting

C̃ = C(E + µ) + ν̃ = �′(�′ + 1), (A.9)

where �′ is a new pseudo-orbital angular momentum which comes from the contribution of
the angle-dependent potential and

D̃ = ν̃ − �̃2, (A.10)
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equation (A.7) becomes

d2�(x)

dx2
− 2x

1 − x2

d�(x)

dx
+

1

(1 − x2)2
(D̃ − C̃x2)�(x) = 0. (A.11)

When equation (A.11) is compared with equation (17), it can be clearly seen that both equations
are the same. By following the solution procedure given in section 2.2, we can obtain the
‘modified’ pseudo-orbital angular momentum for the spin symmetry case,

�′ = n′ +
√

�̃2 + C(E + µ). (A.12)

Equation (A.12) is different from equation (27) from the point of view of the sign within the
square root.

Let us now define

−ε2 = (E2 − µ2), (ε > 0) δ = (E + µ)A, γ = ν̃ + (E + µ)B, (A.13)

and substitute into equation (A.8). The radial equation becomes

d2F(r)

dr2
+

1

r2
(−ε2r2 + δr − γ )F (r) = 0. (A.14)

We solve equation (A.14) by following the solution procedure given in section 2.3. By using
the analytical results listed in table 1, we easily write a comprehensive solution including the
angle-dependent contributions for the spin symmetry case:

(µ2 − E2)(1 + 2n +
√

1 + 4[�′(�′ + 1) + (E + µ)(B − C)])2 − (E + µ)2A2 = 0. (A.15)

Although equation (A.15) has an analytical solution for certain values of the relevant potential
parameters, the expression of E is too complicated to solve it and to find a valid energy
spectrum for the Kratzer potential related to an angle-dependent potential.
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[10] Chen T-S, Lü H-F, Meng J, Zhang S-Q and Zhou S-G 2003 Chin. Phys. Lett. 20 358
[11] Guo J-Y, Fang X Z and Xu F X 2005 Nucl. Phys. A 757 411

Guo J-Y and Sheng Z-Q 2005 Phys. Lett. A 338 90
Guo J-Y, Xu Q and Han J C 2004 J. At. Mol. Phys. (in China) 21 679

[12] Zou X, Yi L Z and Jia C S 2005 Phys. Lett. A 346 54
[13] Jia C-S, Wang X-G, Yao X-K, Chen P-C and Xian W 1998 J. Phys. A: Math. Gen. 31 4763

Jia C-S, Wang J-Y, He S and Sun L-T 2000 J. Phys. A: Math. Gen. 33 6993
Jia C-S, Guo P and Peng X-L 2006 J. Phys. A: Math. Gen. 39 7737
Jia C-S, Liu J-Y, He L and Sun L-T 2007 Phys. Scr. 75 388

[14] Qiang W-C, Zhou R-S and Gao Y 2007 J. Phys. A: Math. Theor. 40 1677
[15] Berkdemir C 2006 Nucl. Phys. A 770 32
[16] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
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